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. BASICS
1. INTRODUCTION

This paper discusses geometric methods pertaining to planar curves consisting of sequences of
straight line segments and arcs of circles joined end to end to make continuous composite curves.
A composite curve of this sort will be called a “contour outline”. The following topics will be
addressed:
1. Methods for rounding the corners of a frame for a contour outline.
2. Methods for creating contour outlines as arc-splines to:
a. mimic the shape of an existing curve or,
b. generate a “nice” curve which passes through or near a set of control points.

Contour outlines are interesting in connection with machining metal parts because instructions for
numerically controlled machining centers typically may specify tool paths which are either straight
line segments or arcs of circles (or helixes), but they typically may not specify any other type of
curve. The driving force behind the research reported here was the need to create machinable
curves, and the desire to introduce them at the design stage. Contour outlines may also be used
effectively in computer graphics.

Other authors [MORT] [BEZI] have discussed various types of composite curves, but few research
results concerning contour outlines, as defined here, have been reported. Contour outlines were
discussed by the author in [KR&J] and [KRAM].

2. OPEN AND CLOSED

“Contour outline” has already been defined. If the starting point of a contour outline is identical to
its end point, the outline will be “closed”. Otherwise, it will be “open”. Two examples of contour
outlines are shown in Figure 1 with solid black lines. Figure 1A is open. Figure 1B is closed.

3. FRAME

The shape of a contour outline may be expressed efficiently by constructing a “frame” of straight
line segments, or “arms”, around the outline and specifying how to round the corners of the frame.
Frames of the contour outlines in Figure 1 are shown in heavy grey lines. A frame may be
constructed for any contour outline by using the straight line segments already in the outline, plus
two or more straight line segments for each arc. Two of the segments for an arc are constructed
tangent to the arc at the ends of the arc. If the arc is less than a semicircle, the point at which the
two segments intersect is taken as the far endpoint of each of them. If the arc is not less than a
semicircle, a third segment tangent to the arc at the midpoint of the arc is constructed, and the
points where it intersects the first two segments are used as the endpoints of the segments. Actually,
any number of segments may be placed tangent to an arc and be part of a frame, so that a contour
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outline does not have a unique frame. In Figure 1A, for example, the arm between points 4 and 5
is not essential; the arms from 3 to 4 and from 6 to 5 could be extended to meet at a point below
the bottom of the figure, making a different frame for the same contour outline.

Figure 1. Two Contour Outlines
3 4 3
1
B
A 7
1 2
4
Corners Corners

1(x1.3 y?2) 1(x5.5 yO0.5 radius auto)
2(x2.0 y25 radius0) 2 (x6.7 y0.4 radius auto)
3(x2.6 y25 radius0.6) 3(x6.5 y25 radius auto)
4(x2.6 yO0.0 radius 0.6) 4 (x6.1 y23 radius auto)
535 y0.0 radius 0.6) Rounding 100
6 (x 3.68 y 0.24 radius 0.0)
7(x5.0 yO0.8)

In the application of the methods described in this paper which has been built by the author, there
is an additional limitations on frames: the three endpoints of two successive arms of a frame may
not be colinear. This is not a very severe restriction because if the second of two colinear segments
is an extension of the first, the two may be replaced by a single segment extending from the

beginning of the first to the end of the second. Cases of one arm doubling back along the preceding
one are excluded, however.

In computer graphics terminology, what we have called a frame is often called a “polyline”.
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4. CORNERS AND ROUNDING

The data to express the shape of a contour outline consists of a numbered list of “corners”, and an
optional “rounding” parameter. A corners list is numbered sequentially, starting with 1. It will be
convenient to use “n” as the index for corners, and “m” for the total number of corners.

The data for each corner include the x- and y-coordinates of the corner (expressed in terms of an
ordinary Cartesian coordinate system) and, possibly, a value for the radius at the corner. An open
contour outline has no radius at the first and last corners. Otherwise, every corner must have a value
for the radius. The radius may have one of four types of values:

1. The value “auto”.

If there is a “rounding” parameter for the contour outline, “auto” means this corner should be
subject to automatic rounding (as shown for all corners in Figure 1 B). If there is no rounding
parameter, “auto” should not be used.

2. A non-negative real number.
A numerical value for the radius means the radius should have that value.
3. The value “join_back”, explained below.

4. The value “join_ahead”, also explained below.

The frame of a contour outline is formed by joining points given by the x- and y-coordinates of the
corners with straight lines. The line segment of the frame which joins corner n to corner n-1 will
be called the downstream arm of corner n. The segment joining corner n to corner n+1 is the
upstream arm. In general, the direction of decreasing n will be called downstream and the direction
of increasing n will be called upstream, so that downstream corresponds to the value of n moving
down.

If a corner is to be rounded, it is rounded with a circular arc which is tangent to the arms of the
corner. Each arm must be at least as long as the sum of the lengths of the lines from its adjoining
corners to the tangent points of the respective arcs.

5. OTHER DETAILS

For a closed contour outline, corner 1 servers as corner n+1 for corner m (the last corner), and
corner m serves as corner n-1 for corner 1. Closed contour outlines may be clockwise or
counterclockwise in the upstream direction.

An arm of a frame may include a portion which becomes part of the contour outline, as shown
between corners 3 and 4 in FigurelA, or all of the arm may be taken up with arcs, as shown
between corners 4 and 5 in the same figure.
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6. JOIN_BACK AND JOIN_AHEAD

If the corner radius at corner n is join_back, that means that corner n-1 must be rounded first, and
the arc at corner n is large enough to be tangent to the downstream arm at the tangent point of the
arc in corner n-1. Thus, the arc at corner n joins back to the arc at corner n-1. The idea of join_ahead
is similar with respect to corner n+1. Examples are shown in Figure 2. In Figure 2 the frame is
again shown in grey and the outline in black.

If the radius at corner n-1 is zero, or if there is no radius at corner n-1 (the only case of which is
corner 1 of an open contour outline), then join_back means the arc at corner n is tangent to the
downstream arm at corner n-1. The meaning of join_ahead is analogous if corner n+1 has zero or
no radius.

Figure 2. Join-back and Join-ahead
A 2 B
7 6
3
8
2
3
1 4 5 1
Corners Corners
1(x0.0 yO0.0 1(x5.0 yO0.0 radiusjoin_ahead)
2(x0.0 yO0.6 radius join_back) 2(x7.2 y1l1l.6 radius0)
3(x1.0 y0.6 radius join_back) 3(x6.0 y2.0 radius join_ahead)
4(x1.0 yO0.0 radiusjoin_back)
5(1.8 y0.0 radius0)
6 (x1.8 y 1.8 radius join_ahead)
7(x0.4 y1.8 radius0.4)
8(x04 yl1l.2)

An entire open contour outline may be rounded by specifying join_back or join_ahead, since the
end points provide a place to start. A closed contour outline requires at least one corner to have a
numerical radius to provide a starting point.

-4 -
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A radius of join_back may not follow a radius of join_ahead. Otherwise, any combination of
numbers, join_back, and join_ahead may be used, as long as the lengths of the arms of the frame
will accommodate the arcs.

When building a contour outline which uses join_ahead and/or join_back, a subsequence of
corners, each of which is to be rounded by the same type of join, must be rounded in order
(backwards for a chain of join_ahead’s, forwards for join_back’s). Thus, the corners of the frame
cannot normally be rounded in sequential order. The final result, however, is independent of the
order of rounding corners, where there is a choice. The corners of the frame for Figure 2A, for
example, could be rounded in the order 2,3,4,7,6 or the order 7,6,2,3,4.

Join_back and join_ahead are not used if automatic rounding is to be done.
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II. AUTOMATIC FRAME ROUNDING

1. INTRODUCTION

A novel method of automatic frame rounding called the “fair share” algorithm has been devised.
For simplicity, the method will be described as it applies to closed contour outlines. Then the
relatively minor modification necessary to handle open contour outlines will be presented.

2. CONCEPT

The approach to automatic frame rounding which has been implemented is illustrated in Figure 3,
which shows three corners of a frame. Imagine that a tiny circle is placed in each corner of the
frame. Think of each circle as a two-dimensional bubble. The bubbles are inflated, keeping them
nestled in their corners, tangent to the arms of the corner. As the bubbles grow larger, the tangent
points of each corner move away from the corner along the arms of the corner. A sequence of seven
growing bubbles is shown for corner 2 on the left side of Figure 3. On the right side, three bubbles
are shown in each corner.

As the bubbles get larger, eventually the two tangent points on some arm reach the same spot.
When this happens, the size of the two bubbles which join at that spot is frozen. The arcs of the
two bubbles which are in the respective corners are kept as portions of the contour outline. The
bubbles in all unfrozen corners continue to be inflated until they join up with either frozen or
unfrozen arcs. The process stops when all bubbles are frozen.

The rates at which the bubbles are inflated may be determined in a variety of ways. The method
which has been implemented requires that the tangent points of all bubbles move away from their
respective corners at the same rate. This has the happy result that arcs at two adjacent corners will
meet at the midpoint of the arm that joins them, if the arcs are not first constrained at the other end.
Thus, on the right side of Figure 3, since the arm between corners 2 and 3 is shorter than the arm
between corners 1 and 2, the arcs in corners 2 and 3 freeze simultaneously when they join at C, the
midpoint of the arm, before the arc in corner 1 freezes. When the arc in corner 2 is frozen, the point
D becomes fixed. The arc in corner 1 continues to grow until the tangent point between corners 1
and 2 reaches D, at which time it is frozen. Observe that the radius of the arc in corner 3 is larger
than the radius of the arc in corner 1, even though its bubble was frozen first. This is because the
radii of the arcs are not growing at fixed rates.

An alternative to moving tangent points at equal rates would be increasing radii at equal rates.
Another alternative would be to allow the areas between the bubbles and their corners to grow at
the same rate. A third alternative would be to allow the centers of the bubbles to move away from
their respective corners at the same rate. None of these alternatives has been implemented.
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Figure 3. Principle of Automatic Frame Rounding

2

Seven views of the bubble growing in corner 2 are shown on the left. The picture on|the
right shows three views of the bubble in each corner. The final contour outline for corners
1, 2, and 3 is shown on the right with a heavy black line. In both views, the frame is shqwn
with grey lines and the growing bubbles with light black lines.

3. FAIR SHARE ALGORITHM

Conceptually, the rounding process is continuous. The bubbles continue to grow smoothly until
they freeze. To implement the process on a computer, it is necessary to make the process discrete
and desirable to make it iterative. This is done by the fair share algorithm. The process is made
discrete by focusing on the instants at which the bubbles freeze and ignoring the growth process.

3.1. Calculating the Fair Share

We may assign to each corner a “fair share” of arm length. The fair share of a corner is the
minimum of its upstream fair share and its downstream fair share. If the radius of corner n+1 has
not yet been fixed, the upstream fair share at corner n is half the distance from corner n to corner
n+1. If the radius at corner n+1 has been fixed, the upstream fair share at corner n is the distance
from corner n to the point of tangency of the arc in corner n+1 to the arm between corner n and
corner n+1. The downstream fair share is defined analogously. These definitions are derived from

-7 -
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the growth process described earlier, since the growth of a bubble will not terminate until the
bubble has taken at least its current fair share.

When an arc freezes (at corner n, we will say), the fair share of the upstream and downstream
corners is recalculated according the method just given, if the radius at those corners has not
already been fixed. Figure 4 shows an example of this. Note that the recalculated fair share is never
smaller than the old value, since when a corner is rounded, it may give up a section of the frame to
an adjacent corner (AB in Figure 4, for example).

Figure 4. Recalculating Fair Share

n-1 Fd(V \

e N n+1

W n+2
N \

n

C

n+2
Suppose corner n-1 has been rounded but corners n and n+1 have not, as shown in the upper
view. The fair share at corner n+1 is the minimum gf -, (half the distance from corner n+[L

to corner n, as marked by point A) angpF{haIf the distance from corner n+1 to corner n+2,|as
marked by point C).

In the lower view, corner n is rounded and is tangent at B to the arm between corner|n and
corner n+1. The fair share of corner n+1 is recalculated as the minimum of a Ry Ehe

distance from B to corner n+1) and the unrevisl%:i F

The fair share of corner n-1 is not recalculated because the radius is already fixed.

3.2. Fixing Radii

The algorithm fixes radii in the same order as the growth process, according to the following steps:
1. Make a list of all corners and calculate the original fair share of each corner.
2. Sort the list by fair share size, smallest first.
3. Assign the radius of the first corner on the list so that distance from the corner to the
tangent point of the arc is the corner’s current fair share and remove the corner from list.
4. If the list is empty, stop.

-8-
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5. Recalculate fair shares for adjacent corners of the corner to which a radius was just given,
if they are still on the list.

6. Resort the list (note that at most two corners on the list have to move).

7. Go to step 3.

In the sorting process, if the fair shares of several sides are equal, the order in which those sides
are listed does not matter; the result will be the same. If none of the several is adjacent to any of
the others, this is obvious, since the fair shares of the others will not have to be recalculated, and
the fair shares that are recalculated can only get larger. If two corners (say n and n+1) with
currently equal fair shares whose radii are not fixed are adjacent, then the upstream fair share at n
(call it F) is equal to the downstream fair share at n+1. If the fair share is equal to F, then the
downstream fair share at n and the upstream fair share at n+1 cannot be smaller than F. Hence when
the radius at either corner is fixed, the distance from the corner to the tangent point will be equal
to F and the point of tangency will be at the midpoint of the arm between n and n+1. If the fair share
is less than F (call it G), then the downstream fair share at n and the upstream fair share at n+1 must
both be equal to this smaller number. Regardless of which corner is rounded first, the fair share of
the other corner will not change, so the distance from that corner to the tangent point will also be
equal to G when it is fixed.

3.3. Modification for Open Frames

If a frame is open, the downstream fair share of corner 2 is always the distance between the first
and second corners, and the upstream fair share of the next-to-last corner is always the distance
from that corner to the last corner.

3.4. Observations
The fair share algorithm produces several interesting effects.

1. The radius assigned to each corner is at least its original fair share radius (half the smaller
of adjacent arms).

This is because a recalculation of fair share can never decrease the fair share of a corner.

2. Any frame which is a regular polygon is rounded into a circle.
The fair shares at all corners start out equal (and do not change) and the included angle at all corners
is the same, so the radii will be the same. Since all the arcs join at the points of tangency to the arms

of the frame, they form a circle.

3. Every arc is attached to at least one other arc (except that the arcs in the second and next-
to-last corners of an open contour outline may possibly not be attached to any other arc).

This may be seen as follows. At the time the radius for the arc at corner n is to be assigned, there

are three possibilities for the two adjacent corners: both have already had radii assigned, only one
has had a radius assigned, or neither has had a radius assigned.

-9-
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Case 1 - Radii of both adjacent corners already assigned:

In this case the fair share at corner n will be equal to the smaller of the two distances between corner
n and the points of tangency of the arcs in the adjacent corners to the arms of corner n. Hence, the
arc in corner n will join with the closest adjacent arc.

Case 2 - Radius of one adjacent corner is already assigned.

This situation is shown in Figure 5. Suppose a radius has been assigned to the upstream corner,
n+1. Note that the fair share point on the arm between corner n and corner n-1 is at the midpoint
M of that arm, a distance D from corners n and n-1. If the arc in corner n does not link to the arc in
corner n+1, then the arc in corner n reaches to M. But the fair share at corner n-1 cannot be smaller
than the fair share at n (or n-1 would get a radius before n), so the downstream fair share at corner
n-1 must be at least as large as D. Hence, when corner n-1 is rounded, its arc will join at M to the
arc at n. A similar argument applies if the downstream corner rather than the upstream one is
already rounded.

Figure 5. Radius of Adjacent Corner Assigned

n

o
/ N \ n+1
M
n-1

Case 3 - Neither adjacent arc has been assigned a radius.

The arc in corner n will reach to the midpoint of the smaller adjoining side. Since the fair share of
the adjoining corner on that side is not smaller than that at n, it must be the same size as the fair
share at n. Hence, the arc in that corner will join with the arc at corner n when it is made.

4. Any closed frame with an odd number of corners will result in a contour outline with at
least one sequence of at least three arcs joined smoothly end to end.

This is a direct result of observation 3, since if it were not true, there would be an unattached arc
somewhere.

-10 -
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4. VARIATIONS OF THE FAIR SHARE ALGORITHM
Several variations of the fair share algorithm have been implemented.
4.1. Reduced Radii

The simplest variation is to reduce corner rounding after radii have been assigned to all corners by
multiplying each radius by the same factor, which must be between zero and 1. The “rounding”
parameter used in describing contour outlines is used this way, except that the value of “rounding”
is a percentage, and is thus in the range of zero to 100.

This variation is useful for drawing. It is common for computer graphics drawing systems to have
the capability to round the corners of a frame slightly. The fair share algorithm with the “rounding”
parameter provides a method of accomplishing this. Results are pleasing to the eye. Figure 6, for
example, shows the same frame as Figure 1B with rounding reduced to 40.

Figure 6. Reduced Rounding

4 3 Corners
1(x55 yO0.5 radius auto)
2 (x6.7 y0.4 radius auto)
3(x6.5 y25 radius auto)
4 (x6.1 y2.3 radius auto)
Rounding 40

2

This contour outline has the same frame as in Figure 1B, but rounding is reduced.

4.2. Alternate Methods of Computing Fair Shares

The fair share algorithm consists of two separable parts: (i) a method of computing fair shares at
each corner, and (ii) a method of fixing radii. The seven-step procedure for fixing radii described
earlier may be used unchanged with different methods of computing fair shares. One of the spline
methods described later in this paper uses an alternate fair share computation.

If an alternate method of computing fair shares is used, the observations numbered 1 through 4
above do not necessarily hold. Figure 7 is an example of a frame rounded by determining fair
shares differently, but using the same method of fixing radii, in which there is an unattached arc.
The figure is an equilateral triangle, 4 units on a side. The numbers on the outside give the upstream
and downstream fair share at each corner. The top corner has a fair share of 1 and will be rounded
first. The bottom corners have a fair share of 2, and will be rounded next. The arc in the top corner

-11 -
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is not attached to any other arc.

If the arcs in Figure 7 had been created using the original method of computing fair shares, they all
would be the same as shown, except the top arc, which would join at both ends with the arcs below
it, as shown by the dotted arc.

If an alternate method of computing fair shares is used, the sum of the two fair shares on an arm of
the frame does not have to equal the length of the arm, but neither share can be more than the
length. If the sum is more than the length, the fair share of one of the corners will decrease during
the radius fixing process.

Figure 7. Unattached Arc
1/\1
XY
3 \.3
|
2 2

4.3. Pre-assignment of Radii

Some of the corners of a frame may have radii assigned to them by some other means before the
fair share algorithm is applied. The bubble growth concept and its implementation may be applied
to the remaining unrounded corners with little change in the implementation. It is not difficult to
use the “rounding” parameter for reducing radii together with pre-assignment of radii, and this has
been implemented.

-12 -
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lll. ARC-SPLINES

1. INTRODUCTION

A “spline” is a continuous curve that passes through or near a set of specified points, called control
points. A great deal has been written about splines ([BROD] [CA&R] [FA&P] [MORT], are a few
references), and it is not the purpose of this paper to present a review of spline methods.

A contour outline constructed as a spline will be called an arc-spline. Two methods of constructing
arc-splines are presented here: the “easy” method and the “expert” method. Both arc-spline
methods use control points to create arcs, use the arcs to define a frame, and then use rounding
methods (such as fair-share) to fix the radii of the corners of the frame. Both methods have been
implemented. In the implementation, control points are located by moving a pointer on a computer
screen with a mouse and clicking a mouse button when the pointer is at the desired location. The
user may add, delete, or move control points with the mouse and keyboard. Once the user is
finished locating control points, the system automatically performs the rest of the calculations.
More details of the implementation are given in [KRAM].

A third type of spline may by constructed by using the control points as the corners of a frame and
then assigning radii to the corners. In the implementation, the user has a choice of five methods of
assigning radii:
1. The user assigns a radius to each corner desired. The radius of any corner not dealt with
by the user defaults to zero.
2. The user specifies a number which is used as the radius for all corners.
3. The user tells the system to assign radii by the fair share method and then take a
percentage, as given by the value of the “rounding” parameter.
4. The user assigns a radius to each corner desired. The radius of any corner not dealt with
by the user defaults to a value specified by the user.
5. The user assigns a radius to each corner desired. The radius of any corner not dealt with
by the user is assigned by the fair share method.
This method is easy to use, and is excellent if a rounded frame is what is desired. It is not
recommended for copying or drawing, however, because the contour outline which is created is apt
to be far from the control points.

Work on curve fitting using circular arcs was reported previously by [BOLT] and [MOSE]. In

[MOSE] a spline is fitted to a set of control points by putting an arc through the first three points
and fitting every other point by putting an arc through it tangent to the previous arc.

-13 -
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2. EXPERT ARC-SPLINE METHOD

The “expert” arc-spline method was developed for copying existing curves and gets its name from
the requirement that the user have some expertise in visually decomposing an existing curve into
straight line segments and roughly circular arcs. The method is illustrated in Figure 8.

The user examines the curve to be copied and divides it into parts that appear to be arcs of circles
or straight line segments, as shown in Figure 8A. If an arc is larger than a third of a circle, it should
be subdivided into two or more parts.

The user marks control point 1. If the curve is open, control point 1 may be at either end. If the
curve is closed, control point 1 may be at the end of any arc or line segment. The user marks control
point 2 anywhere in the interior of the first arc or line segment, control point 3 at the end of the first
arc or line segment (which is also the beginning of the second), control point 4 anywhere in the
interior of the second arc or line segment, and so on. Control points used for sharp bends (which
includes the ends of open curves) are represented differently from control points used for smooth
joints and interior points. In Figure 8B a heaVyindicates an end or sharp bend, while a ligtht
indicates a smooth region. An open curve requires an odd number of control points and a closed
curve an even number. Every even numbered control point is an interior point marked with a
smooth marker. The distance between an interior control point and the ends of the arc or line
segment on which it lies is not critical.

This completes the role of human judgement in the process. The rest is deterministic and is best
handled by a computer. In the implementation, the computer takes over as soon as the user stops
marking control points.

Each triple of control points starting with an odd-numbered point (123, 345, 56 7, etc.) is used
to determine the circular arc which passes through them. If the points are colinear, an arc of large
radius (1000000 is large in the implementation) is used to approximate the line. This eliminates the
need to handle straight line segments separately after this step in the procedure. Figure 8C shows
an exploded view of the arcs.

A two-arm frame is placed around each arc. The point at which the two arms intersect is calculated
for each two-arm frame. A frame for the entire curve is generated by taking all of these intersection
points plus the control points at all sharp corners (including the ends of the curve, if any). These
frame corners are shown with heavy dots in Figure 8C and 8D. They are numbered in 8D.

A radius of zero is assigned to any sharp corner of the frame. The fair share of any other corner is
the length of an arm of the two-arm frame for the corner (the arms are the same length).

Finally, use the radius fixing algorithm described earlier to assign radii to each corner of the frame.
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Figure 8. Expert Method for Arc-Splines
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Neighboring arms of the two-arm frames of adjacent non-sharp corners of will be colinear if the
arcs of the curve being copied that gave rise to those corners are exactly circular and the user has
located control points exactly (the near-vertical arms in the middle of Figure 8C, for example).
Since all that exactness is very unlikely, such arms will be slightly non-colinear. Thus, the sum of
the fair shares of adjacent corners in this algorithm may be slightly greater than the distance
between those corners, but this has little practical effect on the operation of the radius fixing
algorithm.

The expert method produces a frame with relatively few corners, compared with the number of
control points. If the number of control points is C, of which S are sharp, then the number of frame
corners, F, will le F = C/2 + S for a closed frame and F = (C2LY S for an open frame. S is at

least 2 for an open frame, since ends are counted as sharp corners. Thus, the minimum number of
frame corners is C/2 for a closed frame and (C+3)/2 for an open frame. The maximum number of
sharp control points, S, for a closed frame (since only odd-numbered control points can be sharp)
is C/2 for a closed frame and (C+1)/2 for an open frame. Thus, the maximum number of frame
corners is C/2 + C/2 = C for a closed frame and (C-1)/2 + (C+1)/2 = C for an open frame.

3. EASY ARC-SPLINE METHOD

The easy Arc-Spline method may be used either for copying an existing curve or drawing a hew
curve. The method is depicted in Figure 9. The figure and the description below show how the
algorithm works when drawing a new curve. The only difference for copying an existing curve is
that the points are selected to lie on the existing curve.

The user marks a sequence of control points, as shown in Figure 9A. As with the expert method,
marks used for sharp bends (which includes the ends of open curves) differ from marks used for
smooth joints. Locating control points so that the change in direction of lines joining successive
pairs of control points is less than 60 degrees on the smooth parts of the curve produces the best
results. The change of direction should normally not be more than 90 degrees. A few trick
constructions, such as approximating a circle by locating three control points, violate this rule.

This completes the role of human judgement in the process. In the implementation, the computer
takes over as soon as the user stops marking control points. Unlike the expert method, no
distinction is made between even- and odd-numbered points.

The system looks at each control point marked by the user and, if possible, constructs a circular arc
through the point and two of its neighbors. Three cases are shown in Figure 10. If the control point
is not at a sharp bend or end, the neighboring points are the one upstream and the one downstream
(Figure 10A). If the control point is an end, and the point next to it is not at a sharp bend, the two
neighboring points are used (Figure 10B). If the control point is at a sharp bend, two arcs through
the point are constructed, one using the downstream two points, and one the upstream two points
(Figure 10C) - unless the first point downstream or upstream is at a sharp bend, in which case no
arc is constructed on that side.
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Figure 9. Easy Method for Arc-Splines
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A line is drawn tangent to the arc through each control point which has an arc, as shown in Figure
9B and Figure 10. A sharp corner with two arcs gets two tangent lines.

In general, these tangent lines will be used to form a frame, but there is a problem in the case of a
place of inflection. A place of inflection is a sequence of control points (A B C D) such that the
change of direction between line AB and line BC has a different sign from the change of direction
between line BC and line CD.

Intersection points of successive tangent lines are found. If two successive tangent lines are not
lines passing through the middle two points of a place of inflection, the intersection point of the
pair is used as a corner of the frame for the final curve. The intersection points are shown with
heavy dots in Figure 9B.

If there is a place of inflection, the control points in the middle of the place of inflection are used

as corners, and the intersection of the tangents at those points is not used. As may be seen in Figure
9B, the intersection point of such tangents (the heavy dot nearest the top of the figure) may be in a
location that has no relevance to constructing a frame.

If a control point is at a sharp bend, it is used as a corner of the frame.

As shown in Figure 9C, the frame consists of all corners selected as just described.

Figure 10. Constructing Arcs and Tangents from Control Points
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Round the frame, as shown in Figure 9D, by assigning a zero radius at sharp corners and using the
fair share method without variation to assign radii to the rest of the corners.
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The easy method produces a frame with somewhat more corners than control points. If the number
of control points is C, then the minimum number of frame corners, F, will be F = C for any closed
frame with no sharp corners and no inflection places in the control points, and F = C+1 for any
open frame with the same limitations. The effect of sharp control points is variable, and places of
inflection are a confounding factor, so there is no general formula relating the number of control
points, sharp control points, and places of inflection to the number of frame corners. A nearly
maximum number of frame corners, however, occurs when every other control point is sharp,
giving F = 3C/2 for a closed frame and F = (3C-1)/2 for an open frame.
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IV. REMOVING STRAIGHT LINE SEGMENTS FROM CONTOUR OUTLINES

Contour outlines produced directly from frames or by either arc-spline method will generally
include some straight line segments. Other types of splines normally contain no straight line
segments. If it is desired to remove straight line segments from a contour outline, that may be done
as follows.

Figure 11. Replacing Straight Lines with Arcs

__________

1. APPROACH TO REMOVING STRAIGHT LINE SEGMENTS

In Figure 11, two corners of a frame (dotted line) have been rounded with circular arcs (solid
black). The radius of the arc on the left is &d on the right R The left arc is tangent to the frame

at points M and P, the right arc at T and H. A straight line segment is part of the contour outline
from M to T. The line may be eliminated as follows. Locate point C between M and T. Any place
will do, but the spot where MC/CT=fAR, seems best from an esthetic viewpoint. We may assume

another arc joins arc TH from the direction of Q, since if it did nog.cguld be increased until arc

TH joined with one of the neighboring arcs. Line segment CT and arc TH are replaced by two arcs,
CJ (dark grey) and JH (lighter grey). Arc CJ is constructed tangent to the frame at C and tangent
to arc JH at J (a point to be determined). Arc JH is constructed tangent to the frame at H and tangent
to arc CJ at J. The radius, R, of arc CJ will be larger thagnaRd the radius, r, of arc JH will be

smaller than R
A similar construction, not shown in the figure, can replace line CM and arc MP with two arcs.

-20 -



Contour Outlines

The two new arcs are under-determined by the requirements imposed on them. Any positive radius
r smaller than B may be used for arc JH, and that will determine a value for R. This means an

esthetic criterion may be applied in the determination of R and r. It would be nice to require that R
equal r, which is equivalent to saying R/r=1, but this is impossible, since ,RrRlt is possible,

however, to impose the condition that R/r be as close to 1 as possible, i.e. it is at a minimum. That
R/r has a minimum somewhere in the interval 0 <tsigclear from Figure 11, because (i) the ratio

approaches infinity as r approaches zero, and (ii) the ratio approaches infinity as r approgches R
since arc CJ approaches straight line segment CT, implying R approaches infinity.

The determination of R and r is illustrated by Figure 12.

2. CONSTRUCTION OF TANGENT ARCS

To construct Figure 12, suppose that lines CF and FH meet at @rigle desired to construct two

arcs, HJ and JC so that arc JC is tangent to CF at C, arc HJ is tangent to FH at H, and the two arcs
are mutually tangent at J. Let G be the point at which a perpendicular from H meets CF. Let the
length of HG be h and the length of CG be d. The parameters d, I® apecify the situation
completely.

In the figure, we have léd be obtuse. 1B is acute, Figure 12 is slightly different, the two angles
labeledB-90 are 908 instead, and some equations which follow are different. The differences,
however, are slight, and equations [5] and [7] through [22] are unchanged. It is also possible for
point D to lie between F and G, leading to the same result.

1. Construct a perpendicular to FH at H on the inside of corner CFH and a perpendicular to
CG at C, also on the inside.

2. Locate the point | anywhere on the perpendicular from H, as long as the distance from | to
H is less than the perpendicular distance from | to CF. The length of IH will be the radius
r of the small arc.

. Drop a perpendicular from | to CF, meeting CF at D, and passing beyond D.
. Draw an arc with its center at | of radius r downward from H to intersect ID at K.

. Draw line CK and extend it to intersect the arc at J.

o 0 b~ W

. Draw line JI and extend it to intersect the perpendicular from C at A. AC is the radius R
of the larger arc, and A is the center of the arc.

Observe thaf\lJK is isosceles, and AC is parallel to IK. HensACJ is also isosceles. Thus, J lies
on the arc of radius R whose center is at A. Since | is the center of an arc passing through J and
lying on the radius AJ of a larger arc, the two arcs must be tangent at J.

7. Draw the arc JC. Call angle K@D Observe that angle CAJ is 2
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The construction of the arcs is now complete, but to calculate R and r, it is useful to add a few
construction lines.

8. Drop perpendiculars from H and | to AC, meeting at B and N, respectively. Let L be the
intersection point of ID and HB. Observe that angle LHIHS0.

9. Mark point Y on ID extended, so that YD = DK. Draw line CY.

Observe thaACYK is isosceles and similar tvACJ, since they both have an angle of Retween
the two equal sides.

10. Draw line CH.
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Figure 12. Construction of Tangent Arcs
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3. MINIMIZING R/r

FromAILH,
[1] IL = rsin(6-90) = -icoH
[2] HL = rcog6-90) = 1sin

Since DGHL is a rectangle,
[3] DG = HL = rsin
[4] LD=HG=h

Let v=CD. By examining line CG and using equation [3]

[5] v=CD=CG-DG=d-3if

By examining line ID and using equations [1] and [4]

[6] ID=LD+IL=h-rcod

Contour Outlines

Let w = KD. By examining line ID, using equation [6], and noting how IK was constructed,

[7] W=KD=ID-IK=h-ro®$-r

Then fromACDK and equations [5] and [7],
[8] tana = w/v = (h - oD - r)/(d - 1sinB)
Let z = KC. SincACYK is similar toAACJ,
[9] z/2w = R/CJ

But, since IY is parallel to AC, the base/ACJ,
[10] R/CJI=Alz

By examining line AJ,

[11] AI=AJ-J=R-r

Substituting [11] in [10] and then [10] in [9],
[12] z/2w = (R-1)/z

Solving for R,

[13] R=r+ 22w
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SinceACDK is a right triangle, Z= w? + 2, so [13] becomes:
[14] R =r+w/2+ ¢¥/2w
Substituting [5] and [7] in [14] yields:
[15] R ="h/2- (cod)/2 + /2 + (d - sinB)?/ 2(h - coD - 1)

As discussed earlier, we would like to minimize R/r. We will use equation [15] to calculate
f(r) = R/r, then take the derivative of f, set it equal to zero, and solve forr.

[16] f(r) = R/r = h/2r + (1 coD)/2 + (d - s5inB)2 / 2(hr - FcoD - rd)

[17] () =-h/2r2 + {(hr - rPcoD - 1?)2(d - 15iNB)(-sind) - (d - 1SINB)2(h - 2iIcoD -2r)}
2(H2r rcod - r)?

[18] 0 =-h(h - cod - r)2 + 2(hr - EcoD - r)(rsirkd - dsind) - (d -1sinB)(h-2rcoH-2r)
This simplifies to:

[19] 0=r{(cod + 1)(hcodH + dsinB)} - r {( coB +1)(I? + ) } + {h(h? + P)/2}
Equation [19] may be solved by the quadratic formula, using the coefficients:

a= (cod + 1)(hcoH + dsinb)
b = -(cod +1)(Ir¢ + P
c=h(F+ )2

The discriminantb?-4ac, simplifies to a perfect square,{t d?){d(co® + 1) - hsinb} 2, so, after
substituting fora, b, andc in the quadratic formula and simplifying, we get:

2442 _Dhs_i”eDD/z 2
_—bJ_rA/b2—4ac_(h +d)i%i [tosH + 1 he+d

2a B 2(hcosd + dsind)

[20] r

The value of r found by using the + option of theign is larger than Rand cannot be used.
After solving for r, R andt may be found by substituting in equations [15] and [8].
Equation [20] is more attractive if written in terms of the sides a=CF, b=FH, and c=CH of

ACFH. Noting that d=(a4n9), h=ksind, and ¢ =./h?+d? equation [20] becomes:
[21] r=c(c+a-b)/28in6
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By writing equation [21] as follows, and noting that it is easy to constraicBagiven a and, we
observe that by using any of several common constructions for determining one term of an equality
of two ratios, given the other three terms, the length of r at which R/r is a minimum may be
constructed with straight-edge and compass.

[22] rlc = (c+a-b)/28inB
4. APPLICATIONS
This technigue has not been implemented, but it could be used several ways.

The most straightforward use would be to eliminate straight line segments in any contour outline
which had already been completely defined by any of the methods above.

Another application would be in a variation of the easy arc-spline method. The frame would be
constructed exactly as described for the easy method, but the fair share method of rounding the
frame would be replaced as follows:

1. Use the control points from the easy method (except the middle two points of a place of
inflection) as points at which the arc-spline should be tangent to the frame (like points C
and H from Figure 12).

2. At a place of inflection, use the midpoints of the three line segments between successive
points of the place of inflection as points of tangency.

3. Construct pairs of arcs between points of tangency as shown earlier in this section.

This method would yield an arc-spline which consists entirely of arcs of circles, and passes through
all control points except those which are in the middle of places of inflection. Moreover, because
of the method of using control points for constructing a frame in the easy method, the effect of
control point n on the shape of the arc-spline would not extend below control point n-2 or above
n+2, except at places of inflection, where the effect would stop at n-3 and n+3. In other words,
control point n could be moved without affecting the shape beyond those bounds.

A technique for making pairs of tangent arcs similar to the one just described was implemented by

the British Ship Research Association [BOLT] and has been used in shipbuilding. None of the
calculations given here were reported, however.
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V. CRITERIA AND COMPARISON

This section presents criteria for judging spline curves and compares the expert and easy arc-
splines just described with each other, with other spline methods, and with the use of join_ahead
and join_back.

1. PASS THROUGH CONTROL POINTS

Several authors, [CA&R] for example, distinguish between “interpolating splines”, which pass
through their control points and “approximating splines”, which do not necessarily pass through
their control points, but pass near them.

The expert and easy method for making arc-splines both produce approximating splines. If the
guidelines given previously for constructing control points are followed, however, many or all of
the control points may line on the final curve, and the maximum distance of any control point from
the final curve will be small compared to the distance between control points. No theory of the
maximum possible deviation has been developed.

2. NEAR TO LINES BETWEEN CONTROL POINTS

Itis desirable that a spline curve stay near the path defined by straight lines between control points,
bending away from one part of the path only to get closer to the next part.

Some types of splines, such as cubic splines, tend to produce spurious loops away from the path
[BROD, p. 7], and “spline tension” has been devised to eliminate this problem. Arc-splines are
very well behaved in this regard as long as the guidelines for control points are followed. If the
guidelines are violated, the results may be extremely bad. In the expert method, for example, if
control points are located so poorly that adjacent arms of neighboring two-arm frames are far from
colinear, the final curve may incorporate spurious 360 degree loops and stray far from the path.

The method used in [MOSE] is an excellent example of an interpolating spline (it passes through
all control points) which is of little practical value because its normal behavior is to stray far from
the path. Figure 13 shows a simple example of this.

3. INVARIANCES
It is desirable that the shape of a spline curve be invariant under (i) rotation and translation of axes
(if) reversal of the numbering of control points, and (iii) if the curve is closed, circular permutations

of the numbering of control points. The methods described here have all of these kinds of
invariance.
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Figure 13. Badly Behaved Spline Method

One method of using arcs to make a spline, as described in [MOSE], is to pass an arc through
the first three control points, and then construct each successive arc by making it tangent to the
previous arc and passing it through the next control point. This method results in a spline which
passes through all control points but, typically, does not stay close to the path formgd by
straight line segments between control points.

In the picture above, points 1 and 3 through 8 are colinear and equally spaced. If point 2 is
placed midway between point 1 and point 3, as shown by point 2a, this method proddices a
straight line through all eight points. If point 2 is moved to the place shown by point 2D, the

method makes the loopy curve shown above, not an attractive result.

4. INFLECTION

The easy arc-spline method, as already described, handles places of inflection in the control points
awkwardly. Places of inflection are handled transparently by the expert arc-spline method and
most other methods.

5. QUALITY OF COPY

If a spline is used to mimic an existing curve, how many control points are needed to achieve a
given level of approximation?

No formula has been derived to answer this question, but these methods have been applied in
enough cases that the following empirical observations may be made.

1. The expert arc-spline method gives good results with relatively few control points when
the guidelines for control points are followed.

2. The easy arc-spline method gives good results if the guidelines are followed but requires
about twice as many control points as the expert method for the same quality. The expert
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method is more efficient because it benefits from human judgment in detecting transitions
in curvature, while the easy method does not.

3. Using too few control points results in the produced curve straying to one side of the curve
being copied over a large interval. Using too many control points makes the produced
curve wiggle perceptibly back and forth over the curve being copied. These behaviors are
typical of other spline methods.

No head-to-head tests of arc-spline methods against other methods have been conducted.
6. VISUAL APPEAL AND MECHANICAL USEFULNESS

A point at which a curve is continuous may be called a CO point. A point at which the first
derivative of a curve is continuous may be called a C1 point. A point at which the second derivative
of a curve is continuous may be called a C2 point, and so on for C3, C4, etc. A sharp corner of a
curve is a point which is CO but not C1.

The human eye detects discontinuities and sharp corners (points which are not CO or C1)
automatically and without conscious effort. The human eye does not automatically detect points
which are not C2. Humans can detect and locate a non-C2 point only by studying a curve closely.
Thus, points which are not C2 do not generally detract from the visual appeal of a curve.

Having a curve be C2 at all points is mechanically important, however. If a car were driving around
a curve with a non-C2 point, the driver would have to turn the steering wheel instantly from one
position to another to stay on track at that point. An air molecule passing through such a point
would have to have the force on it jump from one value to another.

All points of arc-splines and all other splines are CO points. All points of an arc-spline are C1,
except those where a user has specified otherwise.

Arc-splines have points which are not C2 at every junction of an arc or line segment with the
following arc or line segment, except if two successive arcs have the same radius. The use of arc-
splines for defining shapes with mechanical purposes is likely to be limited for that reason. Their
use for curves meant to please the eye should not be limited for that reason.

7. LOCALIZATION OF CONTROL POINT IMPACT

It is very desirable to localize the impact of each control point. This is done rather elegantly for
some types of splines. When the arc-spline methods described here are applied to typical curves,
such as might be found in a person’s signature, the effect of a control point is usually localized
fairly well; only a few adjacent parts of the contour outline will change when a control point is
moved, removed, or added. This is because a break in the monotonicity of the lengths of frame
arms stops propagation of the effect of the location of a point. The effect of moving one point may
propagate the entire length of an outline, however, if the lengths of arms of the frame are
monotonically increasing or decreasing. An example of this is shown in Figure 14.

-29.



Contour Outlines

Figure 14. Propagation of Effect of One Point

The two frames above are identical except for the length of the innermost arm. If the arms are
numbered from the inside out, starting at 1, the length of each arm is 4n-2, which gives the

sequence (2, 6, 10, 14, 18, ... ), except that the length of the innermost arm on the right is 3. If
radii are calculated either by the fair share method, or by making every radius be join_bagk, the
radii on the left are in the sequence (2, 4, 6, 8, ..., 2n) while the radii on the right are in the

sequence (3, 3, 7,7, 11, 11, ...). These spirals can be extended indefinitely and nevef return
into alignment.

The spline method of [MOSE] is an example of a method in which moving a single control point
can make a radical change in the entire spline, as shown in Figure 13.

8. HANDLING OF SHARP CORNERS

All of the contour outline methods given in this paper handle sharp corners without undue effort.

In the expert and easy arc-spline methods, the user is required to assign sharpness to a control point.
A sharpness parameter is part of the data for each control point, while the value of the radius at a
corner indicates sharpness in a frame.

9. CALCULATION TIME

The implementation of the methods described here is written in Franz LISP and runs uncompiled
on a Sun 3/160 workstation with 8 Mbytes of RAM. The software has not been optimized for
speed. Time trials of frame-rounding and arc-spline methods were run in a window environment
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with other processes. The timing results shown in Table 1 are from a wall clock and are not CPU
times. These are typical times that a user would experience.

Table 1. Timing Results

Type Number Number | Average | Maximum| Minimum
of of Corners or of Time Time Time
Operation Control Points Cases (seconds) (seconds) (secondp)
Fix Radii 10 corners 8 8 11 4

by Fair Share

Fix Radii 40 corners 4 34 35 32
by Fair Share

Easy Method

Construct Frame | 10 control points 6 3 8 2

Fix Radii 9 12 3
Easy Method

Construct Frame | 40 control points 3 20 25 13
Fix Radii 33 35 30

Expert Method

Construct Frame | 10 control points 6 1 1 1
Fix Radii 4 10 3

Expert Method

Construct Frame | 40 control points 3 5 10 3
Fix Radii 15 15 15

10. MACHINABILITY

As stated at the outset, the techniques presented in this paper were developed with the requirement
that machinable shapes be made. This has been achieved. Once the data structures for a contour
outline have been created by these techniques, and enhanced as described in [KR&J], the automatic
generation of numerical control code (NC code) which uses the outline as the path of the center
point of a tool is easy, and has been implemented. Cutting along the left or right of an outline or
varying the depth of cut while following an outline are feasible though not easy, and have also been
implemented.

Spline methods which do not create circular arcs result in curves for which the generation of NC
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code is more of a problem. Linear interpolation to approximate the curve is not difficult, but
requires a great deal of calculation and results in a very large amount of code, with the amount
varying according to the tolerance required.
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VI. APPLICATIONS

The contour outline methods described here have been applied in devising a design protocol
[KR&J] and a system for automatic generation of NC-code [KR&W] for a 3-axis machining
center. Three types of design features have been based on contour outlines. In addition, the text
system described in [KRAM] allows placement of text along a contour outline.

The spline methods described here have been used for copying signatures and line drawings on a
3-axis machining center. The fidelity of the copies has been excellent. Figure 15 shows a picture
of the signature of the author superimposed on a photograph of the machined copy of it made by
using the expert arc-spline method.

Figure 15. Machined Signature

The figure shows the superimposed images of the author’s signature and a copy of it engraved
on an aluminum block. A viewgraph of the signature was made and pasted on the scregn of a
Sun 3 computer. Control points were entered with the mouse. The signature was copigd with
eight vee-bottomed contour grooves, the contour outlines for which were made by the gxpert
arc-spline method. A total of 134 control points were used, resulting in contour outlines With a
total of 81 corners. Process planning and NC-coding were done automatically by the YWS2
system. Machining was done in the VWS by the Monarch VMC-75 vertical machining cgnter.
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